SOLUTION

- Q.1. (A) Four alternative answers are given for every subquestion. Select the correct alternative and write the alphabet of that answer: [4]
- (1) If *a*, *b*, *c* are sides of a triangle and $a^2 + b^2 = c^2$, name the type of triangle: [1]
 - (a) Obtuse angled triangle (b) Acute angled triangle
 - (c) Right angled triangle (d) Equilateral triangle

(2) Chords AB and CD of a circle intersect inside the circle at point E. If AE = 4, EB = 10, CE = 8, then find ED: [1]

- (a) 7 (b) 5
- (c) 8 (d) 9

(3) Co-ordinates of origin are [1] (a) (0, 0) (b) (0, 1) (c) (1, 0) (d) (1, 1)

(4) If radius of the base of cone is 7 cm and height is 24 cm, then find its slant height: [1]

(a) 23 cm (b) 26 cm (c) 31 cm (d) 25 cmAns. (1) – (c), (2) – (b), (3) – (a), (4) – (d) Q.1. (B) Solve the following sub-questions.

(1) If $\triangle ABC \sim \triangle PQR$ and $\frac{A(\triangle ABC)}{A(\triangle PQR)} = \frac{16}{25}$, then find AB:PQ.

Solution:

$$\Delta ABC \sim \Delta PQR \qquad \dots (Given)$$

$$\therefore \quad \frac{A(\Delta ABC)}{A(\Delta PQR)} = \frac{AB^2}{PQ^2} \qquad \dots \begin{pmatrix} \text{Ratio of the areas of} \\ \text{two similar triangles} \end{pmatrix} \qquad [1/2]$$

$$\therefore \quad \frac{AB^2}{PQ^2} = \frac{16}{25}$$

$$\therefore \quad \frac{AB}{PQ} = \frac{4}{5} \qquad (\text{Taking square roots}) \qquad [1/2] [1]$$

Ans. \therefore AB:PQ = 4:5

(2) In \triangle RST, \angle S = 90°, \angle T = 30°, RT = 12 cm, then find RS. **Solution:** T

Ans. \therefore RS = 6 cm

 $[\frac{1}{2}]$ [1]

(3) If radius of a circle is 5 cm, then find the length of the longest chord of the circle.

Solution:

Radius = 5 cm We know that the longest chord of a circle is a diameter. [1/2] diameter = $2 \times \text{radius}$ \therefore diameter = 2×5 = 10 cm [1/2][1]

Ans. \therefore The length of the longest chord is 10 cm.

[4]

(4) Find the distance between the points O(0, 0) and P(3, 4). Solution:

 $O(0, 0) \equiv (x_1, y_1)$ $P(3, 4) \equiv (x_2, y_2)$

By distance formula,

$$d(O, P) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(3 - 0)^2 + (4 - 0)^2}$$

$$= \sqrt{9 + 16}$$

$$= \sqrt{25}$$

$$\therefore \quad d(O, P) = 5$$
[1/2] [1]

Ans. \therefore The distance between the two given points is 5 units.

Q.2. (A) Complete the following activities. (Any *two*) [4] In the given figure, $\angle L = 35^{\circ}$, (1)L find: b. m(arc MLN) m(arc MN) a. Solution: **a.** $\angle L = \frac{1}{2} m (\text{arc MN})$ N Μ ...(By inscribed angle theorem) $\boxed{35^\circ} = \frac{1}{2} m (\text{arc MN})$... [1/2] $2 \times 35 = m(\text{arc MN})$ ·. \therefore m(arc MN)= 70° $[\frac{1}{2}]$ **b.** $m(\text{arc MLN}) = 360^{\circ} - m(\text{arc MN})$ $[\frac{1}{2}]$...[Definition of measure of an arc] $= 360^{\circ} - 70^{\circ}$ **Ans.** \therefore *m*(arc MLN) = 290° [1/2] [2]

(2) Show that $\cot \theta + \tan \theta = \csc \theta \times \sec \theta$ Solution:

L.H.S =
$$\cot \theta + \tan \theta$$

$$= \frac{\cos \theta}{\sin \theta} + \frac{\sin \theta}{\cos \theta}$$

$$= \frac{\boxed{\cos^2 \theta} + \boxed{\sin^2 \theta}}{\sin \theta \times \cos \theta}$$
[1/2 + 1/2]

$$= \frac{1}{\sin \theta \times \cos \theta} \qquad \dots \boxed{\sin^2 \theta + \cos^2 \theta = 1} \qquad [\frac{1}{2}]$$

$$= \frac{1}{\sin \theta} \times \frac{1}{\cos \theta}$$

$$= \csc \theta \times \sec \theta$$
[1/2]

 $\therefore \cot \theta + \tan \theta = \csc \theta \times \sec \theta.$

(3) Find the surface area of a sphere of radius 7 cm. **Solution:**

Surface area of sphere = $4\pi r^2$

$$= 4 \times \frac{22}{7} \times \boxed{7}^2 \qquad [1/2]$$

$$= 4 \times \frac{22}{7} \times \boxed{49} \qquad [1/2]$$

$$= \boxed{88} \times 7 \qquad [\frac{1}{2}]$$

Ans. \therefore Surface area of sphere = 616 sq.cm. [1/2] [2]

Q.2. (B) Solve the following sub-questions. (Any *four*) [8] (1)

In trapezium ABCD side AB || side PQ || side DC. AP = 15, PD = 12, QC = 14, find BQ.

Solution:

AB PQ DC	(Given)	
$\therefore \frac{AP}{PD} = \frac{BQ}{QC}$	$\left(\begin{array}{c} \text{Intercepts made by} \\ \text{three parallel lines} \end{array} \right)$	[1⁄2]
$\therefore \frac{15}{12} = \frac{BQ}{14}$		[1/2]
$\therefore BQ = \frac{15 \times 14}{12}$		[1/2]

Ans. :
$$BQ = 17.5$$
 [1/2] [2]

(2) Find the length of the diagonal of a rectangle whose length is 35 cm and breadth is 12 cm.

Solution:

Let \Box ABCD be the rectangle. $\angle ABC = 90^{\circ}$...(Angle of a rectangle) 12 \therefore In $\triangle ABC$, $\angle ABC = 90^{\circ}$ B 35 $\therefore AC^2 = AB^2 + BC^2$...(Pythagoras theorem) $[\frac{1}{2}]$ $\therefore AC^2 = 12^2 + 35^2$ $\therefore AC^2 = 144 + 1225$ $[\frac{1}{2}]$ $\therefore AC^2 = 1369$ $[\frac{1}{2}]$ $\therefore AC = 37$...(Taking square roots) $[\frac{1}{2}]$ [2]

Ans. The length of the diagonal is 37 cm.

(3) In the given figure, points G, D, E, F are points of a circle with centre C, ∠ECF = 70°, m(arc DGF) = 200°.
Find:
a. m(arc DE)
b. m(arc DEF)

Solution:

a. $\angle DCF = m(\text{arc DGF}) = 200^{\circ}$ $\angle DCF + \angle DCE + \angle ECF = 360^{\circ}$

 $\therefore \quad 200^\circ + \angle \text{DCE} + 70^\circ = 360^\circ$

D

...(Central angle)

...(Total angular measure of a circle)

 $[\frac{1}{2}]$

$$\therefore \angle DCE = 360^{\circ} - 270^{\circ}$$

$$\therefore \angle DCE = 90^{\circ}$$

$$m(\text{arc DE}) = m\angle DCE \quad \dots (\text{Central angle})$$

Ans.

$$\therefore m(\text{arc DE}) = 90^{\circ} \qquad [\frac{1}{2}]$$

b.

$$m(\text{arc EF}) = m\angle ECF \quad \dots (\text{Central angle})$$

$$\therefore m(\text{arc DEF}) = 70^{\circ}$$

$$m(\text{arc DEF}) = m(\text{arc DE}) + m(\text{arc EF})$$

$$\therefore m(\text{arc DEF}) = 90^{\circ} + 70^{\circ} \qquad [\frac{1}{2}]$$

Ans.

$$\therefore m(\text{arc DEF}) = 160^{\circ} \qquad [\frac{1}{2}]$$

(4) Show that points A(-1, -1), B(0, 1), C(1, 3) are collinear. Solution:

Let $A(-1, -1) \equiv (x_1, y_1)$ $B(0, 1) \equiv (x_2, y_2)$ **Slope of AB** = $\frac{y_2 - y_1}{x_2 - x_1}$ $=\frac{1-(-1)}{0-(-1)}$ $=\frac{2}{1}$ = 2 $[\frac{1}{2}]$ Let $B(0, 1) \equiv (x_1, y_1)$ $C(1, 3) \equiv (x_2, y_2)$ **Slope of BC** = $\frac{y_2 - y_1}{x_2 - x_1}$ $=\frac{3-1}{1-0}$ $=\frac{2}{1}$ = 2 [1/2] Let $A(-1, -1) \equiv (x_1, y_1)$ $\mathbf{C}(1,3) \equiv (x_2, y_2)$ **Slope of AC** = $\frac{y_2 - y_1}{x_2 - x_1}$

$$= \frac{3 - (-1)}{1 - (-1)}$$

= $\frac{4}{2}$
= 2 [1/2]

Since the slopes of AB, BC and AC are equal, points A(-1, -1), B(0, 1) and C(1, 3) are collinear.

Hence proved.

(5) A person is standing at a distance of 50 m from a temple looking at its top. The angle of elevation is of 45°. Find the height of the temple.

Solution:

Let AB be the height of the temple and the person is standing at point 'C'. BC is the distance between the person and the temple.

Angle of elevation = $\angle ACB$ In $\triangle ABC$,

 $\angle B = 90^{\circ} \qquad \dots \text{(The temple is pendicular to the ground)}$ $\therefore \tan C = \frac{AB}{BC}$ $\therefore \tan 45^{\circ} = \frac{x}{50} \qquad \dots (\because \angle C = 45^{\circ}) \qquad [\frac{1}{2}]$ $\therefore \qquad 1 = \frac{x}{50}$ $\therefore \qquad x = 50 \text{ m} \qquad [\frac{1}{2}] [2]$

Ans. \therefore The height of the temple is 50 m.

Q.3. (A) Complete the following activities. (Any *one*) [3] (1) P.

[1/2] [2]

50 m

 $[\frac{1}{2}]$

А

х

B

 $[\frac{1}{2}]$

In $\triangle PQR$, seg PM is a median. Angle bisectors of $\angle PMQ$ and $\angle PMR$ intersect side PQ and side PR in points X and Y respectively. Prove that XY|| QR.

Complete the proof by filling in the boxes.

Solution:

In $\triangle PMQ$, Ray MX is the bisector of $\angle PMQ$.

$$\therefore \frac{MP}{MQ} = \frac{PX}{QX} \dots (I)$$
(Theorem of angle bisector) $[\frac{1}{2} + \frac{1}{2}]$

Similarly, in $\triangle PMR$, Ray MY is the bisector of $\angle PMR$.

$$\therefore \frac{MP}{MR} = \frac{PY}{RY} \dots (II) \frac{(\text{Theorem of}}{\text{angle bisector}}) \qquad [\frac{1}{2} + \frac{1}{2}]$$

$$But \frac{MP}{MQ} = \frac{MP}{MR} \dots (III) \text{ (As M is the midpoint of QR)}$$
Hence MQ = MR [1/2]
$$\therefore \frac{PX}{PX} = \frac{PY}{PY} \qquad [From (I) (II) and (III)] \qquad [\frac{1}{2}] [3]$$

$$\therefore \quad \frac{PX}{QX} = \frac{11}{YR} \quad \dots [From (I), (II) and (III)] \quad [\frac{1}{2}] [3]$$

 \therefore XY || QR ...[Converse of basic proportionality theorem]

(2) Find the co-ordinates of point P where P is the midpoint of a line segment AB with A(-4, 2) and B(6, 2).

Solution:

$$A \bullet \underbrace{P(x, y)}_{(-4, 2)} H \bullet B$$

Suppose, $(-4, 2) = (x_1, y_1)$ and $(6, 2) = (x_2, y_2)$ and co-ordinates of P are (x, y).

... According to midpoint theorem,

$$x = \frac{x_1 + x_2}{2} = \frac{-4}{2} + \frac{6}{2} = \frac{2}{2} = \frac{1}{2} = \frac{1}{2}$$

$$y = \frac{y_1 + y_2}{2} = \frac{2 + 2}{2} = \frac{4}{2} = 2$$
 [1/2 + 1/2]

 $\therefore \text{ Co-ordinates of midpoint P are } (1, 2) \qquad [\frac{1}{2}] [3]$

Q.3.	(B) Solve the following sub-questions	s. (Any <i>two</i>) [6]
(1)	In $\triangle ABC$, seg AP is a median. If BC = find AP.	$AB^2 + AC^2 = 260$
Solu	tion:	
	In $\triangle ABC$, AP is a median.	
	BP = PC = 9	$\sum_{\mathbf{p}} \frac{1}{\mathbf{p}} \sum_{\mathbf{p}} \frac{1}{\mathbf{p}} $
	$AB^2 + AC^2 = 2AP^2 + 2BP^2(Apolloniu)$	$s \xrightarrow{B} P C$
	theorem)	[1/2]
	$260 = 2(AP^2 + 9^2)$	[1/2]
∴	$AP^2 + 81 = \frac{260}{2}$	[1/2]
<i>.</i> :.	$AP^2 = 130 - 81$	[1/2]
<i>.</i> .	$AP^2 = 49$	
<i>.</i>	AP = 7(Taking square roo	ots) $[\frac{1}{2}][3]$
Ans.	AP = 7	

(2) Prove that "Angles inscribed in the same arc are congruent." **Solution:** Q S

Given: \angle PQR and \angle PSR are inscribed in the same arc PQR and their intercepted are is arc PXR. $[\frac{1}{2}]$ Ρ R **To Prove:** $\angle PQR \cong \angle PSR$ $[\frac{1}{2}]$ X **Proof:** $m \angle PQR = \frac{1}{2} m(\text{arc } PXR)$...(Inscribed angle) ...(1) [1/2] $m \angle PSR = \frac{1}{2} m(\text{arc PXR})$...(Inscribed angle) ...(2) $[\frac{1}{2}]$ $m \angle PQR = m \angle PSR$...[From (1) and (2)] $[\frac{1}{2}]$ $\angle PQR \cong \angle PSR$ [1/2] [3] Hence proved.

(3) Draw a circle of radius 3.3 cm. Draw a chord PQ of length 6.6 cm. Draw tangents to the circle at points P and Q.

...

...

AB and CD are the tangents at points P and Q respectively.

1.	To draw a circle of radius 3.3 cm.	[1/2]
2.	To draw a 6.6 cm chord passing through the centre	[1/2]
3.	To draw tangents at point P	[1]
4.	To draw tangents at point Q	[1] [3]

(4) The radii of circular ends of a frustum are 14 cm and 6 cm respectively and its height is 6 cm. Find its curved surface area.

 $(\pi = 3.14)$

Solution:

...

Here, $r_1 = 14$ cm, $r_2 = 6$ cm and h = 6 cm.

Slant height of a frustum (*l*) =
$$\sqrt{h^2 + (r_1 - r_2)^2}$$
 [1/2]

$$= \sqrt{6^2 + (14 - 6)^2} \qquad [1/2]$$

$$= \sqrt{6^2 + 8^2}$$
$$= \sqrt{36 + 64}$$
$$= \sqrt{100}$$

l = 10 cm [½]

Curved surface area of a frustum = $\pi (r_1 + r_2)l$ [½]

 $= 3.14 \times (14 + 6) \times 10$ [¹/₂]

$$= 3.14 \times 20 \times 10$$

$$= 628 \text{ cm}^2 \quad [\frac{1}{2}] [3]$$
Ans. \therefore The curved surface area of the frustum is 628 sq.cm.
Q.4. Solve the following sub-questions. (Any *two*) [8]
(1) In \triangle ABC, seg DE || side BC. If $2A(\triangle ADE) = A(\square DBCE)$, find AB:AD and show that BC = $\sqrt{3}$ DE.
Solution:
Given: In \triangle ABC, seg DE || side BC.
To find: AB:AD
To prove: BC = $\sqrt{3}$ DE
Proof:
 $2A(\triangle ADE) = A(\square DBCE)$ (Given)
 $A(\triangle ABC) = A(\triangle ADE) + A(\square DBCE)$
 $\therefore A(\triangle ABC) = A(\triangle ADE) + 2A(\triangle ADE)$ [$\frac{1}{2}$]
 $= 3A(\triangle ADE)$
 $\therefore \frac{A(\triangle ABC)}{A(\triangle ADE)} = 3$ (I) [$\frac{1}{2}$]
In $\triangle ADE$ and $\triangle ABC$,
 $\angle DAE = \angle BAC$ (common angles) [$\frac{1}{2}$]
 $\angle ADE = \angle ABC$ (corresponding angles) [$\frac{1}{2}$]
 $\therefore \frac{A(\triangle ABC)}{A(\triangle ADE)} = \frac{BC^2}{DE^2}$ (Areas of similar
triangles)... (II) [$\frac{1}{2}$]
 $\therefore \frac{BC^2}{DE^2} = 3$ [From I and (II)] [$\frac{1}{2}$]
 $\therefore BC = \sqrt{3}DE$ [$\frac{1}{2}$][$\frac{1}{2}$]
Hence proved.

(2) Δ SHR ~ Δ SVU. In Δ SHR, SH = 4.5 cm, HR = 5.2 cm, SR = 5.8 cm and $\frac{\text{SH}}{\text{SV}} = \frac{3}{5}$, construct Δ SVU.

Solution:

(3) An ice-cream pot has a right circular cylindrical shape. The radius of the base is 12 cm and height is 7 cm. This pot is completely filled with ice-cream. The entire ice-cream is given to the students in the form of right circular ice-cream cones, having diameter 4 cm and height 3.5 cm. If each student is given one cone, how many students can be served?

Solution:

Cylinder: Radius $(r_2) = 12$ cm and (H) = 7 cm

Cone: Diameter = 4 cm, Radius $(r_1) = 2$ cm and height (h) = 3.5 cm Let the number of students be *x*.

 $x \times$ Volume of a cone = Volume of the cylinder [1]

:.
$$x \times \frac{1}{3} \pi r_1^2 h = \pi r_2^2 H$$
 [1/2]

$$\therefore \quad \frac{x}{3} \times r_1^2 \mathbf{h} = r_2^2 \mathbf{H}$$
 [1/2]

$$\therefore \qquad x = \frac{3r_2^2 \mathrm{H}}{r_1^2 \mathrm{h}} \qquad \qquad [1/2]$$

$$\therefore \qquad x = \frac{3 \times 12 \times 12 \times 7}{2 \times 2 \times 3.5} \qquad [1/2]$$

$$\therefore \quad x = 12 \times 18$$
 [1/2]

$$\therefore \quad x = 216$$
Ans. $\therefore \quad 216$ students can be served.
[1/2][4]

216 students can be served. Ans. ...

Q.5. Solve the following sub-questions. (Any *one*) (1)

A circle touches side BC at point P of $\triangle ABC$, from outside of the triangle. Further extended lines AC and AB are tangents to the circle at N and M respectively. Prove that:

$$AM = \frac{1}{2}$$
 (Perimeter of $\triangle ABC$)

Solution:

Perimeter of $\triangle ABC = AB + BC + CA$ $[\frac{1}{2}]$

$$=AB + (BP + PC) + (AN - CN)$$
[1]

Now, BP = BM, AN = AM and CN = PC $[\frac{1}{2}]$

...(Tangents drawn from an exterior point are equal)

[3]

 \therefore Perimeter of $\triangle ABC = (AB + BM) + PC + (AM - PC)$ [¹/₂] = AM + AM= 2AM \therefore AM = $\frac{1}{2}$ (Perimeter of \triangle ABC) [1/2][3] Hence proved. Eliminate θ if $x = r \cos \theta$ and $y = r \sin \theta$. (2) Solution: $x = r \cos \theta$ and $y = r \sin \theta$ $x^2 = r^2 \cos^2 \theta$ *.*. ...(I) [1/2] and $y^2 = r^2 \sin^2 \theta$...(II) [1/2] $\therefore \quad x^2 + y^2 = r^2 \cos^2 \theta + r^2 \sin^2 \theta \quad \dots \text{ [Adding (I)]}$ and (II)] $[\frac{1}{2}]$

$$\therefore x^{2} + y^{2} = r^{2} (\cos^{2} \theta + \sin^{2} \theta)$$

$$\therefore x^{2} + y^{2} = r^{2} \times 1 \qquad \dots (\because \sin^{2} \theta + \cos^{2} \theta = 1)$$
[1/2]

Ans. $x^{2} + y^{2} = r^{2}$
[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[1/2]

[
